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Abstract
Many reef invertebrates reproduce through simultaneous broadcast spawning, with an 
apparent advantage of overwhelming potential predators and maximizing propagule 
survival. Although reef fish have been observed to consume coral gamete bundles 
during spawning events, there are few records of such predation by benthic inverte-
brates. Here, we document several instances of the ruby brittle star, Ophioderma rubi-
cundum, capturing and consuming egg-sperm bundles of the mountainous star coral, 
Orbicella faveolata, and the symmetrical brain coral, Pseudodiploria strigosa, during 
spawning events in the Cayman Islands in 2012 and the Florida Keys in 2022. These 
observations are widely separated in space and time (>600 km, 10 years), suggesting 
that this behavior may be prevalent on western Atlantic reefs. Since O. rubicundum 
spawns on the same or subsequent nights as these coral species, we hypothesize that 
this opportunistic feeding behavior takes advantage of lipid-rich coral gamete bun-
dles to recover energy reserves expended by the brittle star during gametogenesis. 
The consumption of coral gametes by adult brittle stars suggests an underexplored 
trophic link between reef invertebrates and also provides evidence that ophiuroid–
coral symbioses may oscillate between commensalism and parasitism depending on 
the ontogeny and reproductive status of both animals. Our observations provide in-
sights into the nuanced, dynamic associations between coral reef invertebrates and 
may have implications for coral reproductive success and resilience.
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1  |  INTRODUC TION

Most reef-building scleractinian coral species reproduce through 
broadcast spawning, whereby gametes are released into the water 
column for external fertilization (Baird et al., 2009). In many cases, 
multiple coral species and invertebrate taxa spawn in near synchrony, 
within minutes or hours of one an other (Babcock et al., 1992, 1986; 
Bouwmeester et al., 2016; Harrison et al., 1984; Van Veghel, 1993). 
Mass spawning may have evolved to maximize fertilization success 
by generating high concentrations of gametes (Levitan et al., 2011; 
Moláček et al., 2012; Oliver & Babcock, 1992), but also as a strategy 
to minimize predation losses by saturating predator feeding capacity 
and reducing the impact on any single spawning individual or species 
(Alino & Col, 1989; Harrison et al., 1984; Hughes et al., 2000).

On the Great Barrier Reef, planktivorous fish in the fami-
lies Caesionidae (fusiliers), Chaetodontidae (butterflyfishes), and 
Pomacentridae (damselfishes) have been found to feed on substan-
tial quantities of coral propagules during mass spawning events 
(Alino & Col, 1989; Baird et al., 2001; McCormick, 2003; Pratchett 
et al.,  2001; Westneat & Resing,  1988). In the western Atlantic, 
butterflyfishes have been reported to prey intensely on Diploria 
labyrinthiformis gamete bundles as they are released (Chamberland 
et al., 2017; Muller & Vermeij, 2011). Although these trophic links 
between fish and corals are well established (Pratchett et al., 2001), 
there are remarkably few publications describing consumption of 
coral spawn by invertebrates or other marine organisms (Schmahl 
et al., 2008).

Ophiuroids, commonly known as brittle stars, are among the 
most biodiverse and prolific invertebrates on Caribbean coral reefs 
(Kissling & Taylor, 1977; Stöhr et al., 2022). Despite their abundance, 
these cryptic animals are rarely seen, hidden within the reef struc-
ture by day and primarily emerging at night to feed (Birkeland, 1988; 
Fell,  1966; Hendler et al.,  1995; Pomory,  2003). The ruby brittle 
star, Ophioderma rubicundum, is widely distributed on shallow reefs 
throughout the western Atlantic (Clark,  1933; Hotchkiss,  1982; 
Lewis & Bray, 1983; Pomory, 2003). In some locations such as Carrie 
Bow Cay, Belize, O. rubicundum has been reported among the most 
numerous ophiuroid species, comprising nearly half of all brittle 
star specimens collected from fore-reef environments with high liv-
ing coral cover (Hendler & Pawson, 2000; Hendler & Peck, 1988). 
However, this species has been reported at lower abundances (i.e., 
0.2 individuals per square meter [Lewis & Bray, 1983]), and is fre-
quently found in reef crest, reef flat, and rubble environments. 
They have been described as “opportunistic omnivores” that feed 
on small organisms, including dinoflagellates, diatoms, foraminifer-
ans, hydroids, polychaetes, crustaceans and mollusks (Binyon, 1972; 
Reese, 1966). In some cases, O. rubicundum have been reported to 
exhibit predatory behavior, seizing prey from the benthos or water 
column by coiling an arm around it before transporting it to the 
mouth (Birkeland, 1988; Hendler et al., 1995; Reese, 1966; Reimer 
& Reimer, 1975). Here, we report observations of O. rubicundum cap-
turing and feeding on coral egg-sperm bundles in two locations in 
the western Atlantic.

2  |  FIELD OBSERVATIONS

2.1  |  Cayman Islands, September 2012

On September 6, 2012, five nights after the full moon (AFM), di-
vers observed a coral spawning event at Ironshore Gardens in Half 
Moon Bay, East End, Grand Cayman (19°17′29.1″ N, 81°08′37.1″ 
W). Throughout the dive, five adult Ophioderma rubicundum were 
photographed climbing atop spawning coral colonies. At 22:13, 
one O. rubicundum was observed to crawl onto the surface of an 
Orbicella faveolata colony as it readied its gamete bundles for release 
(Figure  1a). From 22:26 to 22:32, four O. rubicundum were photo-
graphed consuming gamete bundles of a Pseudodiploria strigosa col-
ony as it spawned (Figure 1b,c). In both coral species, the brittle stars 
captured multiple gamete bundles at once with one or two arms, 
using the arm-coil behavior described by Reimer and Reimer (1975).

2.2  |  Florida Keys, USA, August 2022

On August 17, 2022, six nights AFM, divers from the National Oceanic 
and Atmospheric Administration Southeast Fisheries Science Center 
(NOAA SEFSC), and the University of Miami Rosenstiel School of 
Marine, Atmospheric, and Earth Science observed O. faveolata 
spawning at Horseshoe Reef in Key Largo, FL (24°39′40.26″ N, 
80°59′39.06″ W). At 00:14 on 18th August, an adult O. rubicundum 
was filmed extending two arms from its shelter within a spawning 
O. faveolata colony, waving them over the coral as the coral began 
to release gamete bundles (Figure 2). Additional video footage then 
shows the same brittle star, having emerged completely and perched 
on the surface of the colony, capturing numerous egg-sperm bun-
dles (Video 1). The brittle star coiled two of its arms around approxi-
mately a dozen gamete bundles each, and was observed to move the 
bundles toward the mouth.

3  |  DISCUSSION

This report presents rare visual documentation and description 
of benthic invertebrates consuming gamete bundles during coral 
spawning events, and represents the first record of this behavior 
involving multiple coral species and in multiple locations in the west-
ern Atlantic.

Despite numerous studies detailing predation by reef fish 
on coral spawn on the Great Barrier Reef (Alino & Col,  1989; 
Baird et al.,  2001; McCormick,  2003; Pratchett et al.,  2001; 
Westneat & Resing,  1988), there are few accounts of such pre-
dation in the western Atlantic (Chamberland et al., 2017; Muller 
& Vermeij,  2011). Only one publication mentions coral spawn 
consumption by benthic invertebrates; Schmahl et al.  (2008) 
include one sentence about Ophioderma rubicundum collect-
ing coral gamete bundles during a mass spawning event in the 
Flower Garden Banks (Schmahl et al.,  2008), accompanied by a 
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photograph depicting one brittle star atop a spawning Orbicella 
franksi colony (credited to E. L. Hickerson). The addition of our ob-
servations from locations as far apart as Key Largo in the Florida 
Straits and the Cayman Islands in the Caribbean Sea (distances 
of >600 km), and over decadal timescales (2012 to 2022) suggest 
that consumption of coral gametes by O. rubicundum may be com-
mon on Caribbean reefs. In addition, the documented consump-
tion of gamete bundles from multiple species of coral, including 
Pseudodiploria strigosa, Orbicella faveolata, and Orbicella franksi 
[Schmahl et al.,  2008], indicates that O. rubicundum may oppor-
tunistically feed on the spawn of any broadcast spawning corals 
upon or near which they reside.

The specific feeding response we document here—whereby brit-
tle stars coil their arms around gamete bundles—matches how O. ru-
bicundum respond to other high-value food sources. In a laboratory 
study, O. rubicundum presented with pieces of crab, fish meat, and 
sea urchin viscerae quickly left their hiding places, moved toward the 
food source, coiled an arm around it, and transported it to the mouth 
for ingestion (Reimer & Reimer, 1975). The arm-coiling behavior in 
our images and footage thus represents a strong feeding response, 
suggesting that the brittle stars perceive coral gamete bundles as 
desirable prey items.

This behavior may be related to the reproductive status of each 
animal, since corals and brittle stars often spawn on the same or sub-
sequent nights. Orbicella faveolata and P. strigosa typically spawn sev-
eral hours after sunset, five to nine nights after the full moon (AFM) 
in August and/or September (Sánchez et al., 1999; Szmant,  1986; 
Vize et al., 2005; Wyers et al.,  1991), while O. rubicundum spawns 
after sunset six to nine nights AFM from August to November (De 
Graaf et al.,  1999; Hagman et al.,  1998; Hagman & Vize,  2003; 
Hendler,  1979; Schmahl et al.,  2008). The seasonal production of 
eggs and sperm is energetically costly for iteroparous invertebrates, 
requiring considerable investment of resources and space within 
the body cavity (Greenfield et al.,  1958; Giese,  1966; Leuzinger 
et al., 2003; Stimson, 1987; Ward, 1995). These corals and ophiuroids 
both release eggs and sperm into the water column for external fer-
tilization (Fell,  1966; Hendler et al., 1995), resulting in planktonic, 
lecithotrophic larvae rich in polar lipids, wax esters, and triacyl-
glycerols for buoyancy and development (Figueiredo et al.,  2012; 
Giese,  1966; Nevenzel,  1970; Hendler,  1979; Stimson,  1987; Arai 
et al., 1993; Villinski et al., 2002; Harii et al., 2007; Harii et al., 2010; 
Padilla-Gamiño et al., 2013).

Given the nearly concurrent timing of spawning in O. rubicun-
dum and various western Atlantic corals, we hypothesize that 

F I G U R E  1 Adult Ophioderma 
rubicundum climbing atop spawning 
scleractinian corals in Half Moon Bay, East 
End, Grand Cayman on 6th September 
2012. (a) An adult O. rubicundum waits on 
the surface of an Orbicella faveolata colony 
as it stages gamete bundles in the mouths 
of each polyp, preparing to spawn. (b,c) 
Four O. rubicundum feed on Pseudodiploria 
strigosa gamete bundles as they are 
released, coiling an arm around the prey 
before passing it to the mouth.
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feeding on coral gamete bundles can supplement the depleted 
lipid stores of brittle stars and boost metabolic and/or reproduc-
tive function (Giese, 1966; Greenfield et al., 1958). On the Great 
Barrier Reef, planktivorous fishes amass considerable lipid stores 
as a result of coral gamete consumption (Pratchett et al., 2001). 
Female Pomacentrus amboinensis that feed on large quantities 
of coral propagules produce larvae with larger yolk sacs and oil 
globules than those that eat few or none (McCormick,  2003). 
Presumably, gravid O. rubicundum experience similar positive 
maternal effects from feeding on lipid-rich coral spawn. Indirect 
coral gamete consumption may also provide nutrition for reef 
organisms, evidenced by observations of targeted corallivory on 
gravid polyps by parrotfish, spider crabs, and butterflyfish (Bright 
& Miller, 2016; Chamberland et al., 2017; Rotjan & Lewis, 2009). 

Overall, coral spawning seems to present a convenient and valu-
able food source to enhance metabolic and/or reproductive out-
put in other reef organisms.

Ophioderma rubicundum live inside reef structures, relying on 
coral colonies as habitat and shelter during daylight hours (Hendler 
et al., 1995; Pomory, 2003), and perch atop colonies to release their 
gametes when they spawn (Schmahl et al., 2008). They are typically 
considered commensals, since no costs or benefits are apparent for 
their coral hosts. However, our observations warrant a reevalua-
tion of how O. rubicundum associate with corals, potentially shifting 
from commensals to parasites/predators during certain critical times 
of the year. Similarly dynamic symbioses have been documented 
among other reef invertebrates, at times impacted by the life stage 
of both animals. For instance, although cleaning behavior of the 
obligate sponge-dwelling brittle star Ophiothrix lineata may bene-
fit its host, Callyspongia vaginalis, by increasing filtration efficiency 
(Hendler, 1984), the ophiuroid has also been found to consume the 
larvae of the sponge, thus exhibiting characteristics of both mutual-
ism and parasitism (Henkel & Pawlik, 2014). In addition, only larger 
echinoderms take shelter as commensals on or within coral colo-
nies, as larvae and juveniles are vulnerable to tentacle capture or 
entanglement with coral mucus (Hendler & Littman, 1986; Lewis & 
Price, 1975; Yamaguchi, 1974). Similar shifts as organisms age may 
occur in epizoic bryozoans (e.g., Hippoporidra) and scleractinians liv-
ing on shells of hermit crabs. As these epizoites grow, they enlarge 
the internal habitable volume of the shell, prolonging the use of the 
shell by the growing crab, effectively shifting the role of the epizoite 
from commensal to mutualist (Taylor, 2009).

These observations of predation on coral gametes by adult brit-
tle stars highlight the complexity of trophic dynamics during on-
togeny and represent an understudied pathway of energy transfer 
among reef invertebrates. In light of these findings, we suggest that 
further observations be made during coral spawning events, by div-
ers and/or submersible camera traps, to identify whether additional 
instances of coral gamete consumption have gone undocumented, 
especially by other invertebrate species that reproduce around the 
same time as corals.

Most broadcast spawning corals, including O. faveolata and 
P. strigosa, release gametes on just a few nights per year (Szmant, 1986), 
limiting their prospects for reproduction. Although reef fish can con-
sume large quantities of coral gametes during mass spawning events 
(Westneat & Resing,  1988), predation occurs in the water column 
and is likely to be distributed among the gametes of many colonies. 
In contrast, since brittle stars are confined to the surfaces of coral 
colonies, their feeding is presumably confined to the gamete bundles 
of the very coral that it is using for shelter, potentially impacting that 
individual more directly. Although any loss of gametes, by definition, 
decreases reproductive fitness, the overall impact of ophiuroid pre-
dation remains unknown and likely depends on (1) coral colony size, 
(2) the number of bundles released during a spawning event, (3) how 
many brittle stars feed on the surface of the coral, and (4) how many 
bundles each brittle star consumes. Coral fecundity increases dispro-
portionately with colony size (Hall & Hughes, 1996; Álvarez-Noriega 

F I G U R E  2 Screenshot from video footage depicting Ophioderma 
rubicundum (circled in white) emerging from its crevice within an 
Orbicella faveolata colony as the coral begins to spawn off Key 
Largo, FL in August 2022. Arm-waving behavior from O. rubicundum 
can be seen as parts of the coral has released gamete bundles, 
while polyps in the area near the brittle star are still “staging” 
gamete bundles for release.

V I D E O  1 An adult Ophioderma rubicundum captures egg-sperm 
gamete bundles from a spawning Orbicella faveolata colony off Key 
Largo, FL on 17th August 2022. The brittle star has two arms each 
coiled around approximately one dozen gamete bundles that were 
just released from the colony.
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et al.,  2016), likely because smaller colonies invest more energy in 
somatic growth than reproduction. In large colonies that release 
thousands of gametes at once, the capture of a few dozen bundles 
by ophiuroids may be minimally impactful. However, the reproductive 
success of a smaller colony that releases fewer bundles may dimin-
ish considerably if several dozen are eaten upon release, or if multiple 
brittle stars feed on its surface (as we observed on a P. strigosa colony). 
Consequently, future studies should quantify the number of coral 
gamete bundles that mature brittle stars consume, particularly as a 
proportion of total colony output.

The two coral species whose gametes were consumed are par-
ticularly vulnerable; O. faveolata was listed as “threatened” under 
the US Endangered Species Act in 2014, and P. strigosa was re-
cently reclassified as “critically endangered” by IUCN (Rodríguez-
Martínez et al., 2022), having experienced considerable declines 
in recent years due to stony coral tissue loss disease (Camacho-
Vite et al.,  2022). Coral reproduction is already compromised; 
as the number of potential parent corals declines and spawn-
ing becomes less synchronized (Gardner et al.,  2003; Levitan & 
McGovern,  2005; Shlesinger & Loya,  2019), external pressures 
such as gamete predation may further decrease fertilization suc-
cess, reduce recruitment, and inhibit community recovery follow-
ing disturbance (Hughes et al.,  2000; Hughes & Tanner,  2000; 
Oliver & Babcock,  1992). Consequently, trophic interactions be-
tween reef invertebrates may have increasingly important impli-
cations for coral reproduction and resilience, warranting further 
investigation into their nuances.
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